
A SELF-EVOLVING CONTROLLER FOR A PHYSICAL ROBOT: A NEW
INTRODUCED AVOIDING ALGORITHM

Dan Marius Dobrea

Adriana Sirbu
Monica Claudia Dobrea

Faculty of Electronics, Telecommunications and Information Technologies
“Gheorghe Asachi” Technical University

Bd. Carol I, no. 11, Iaşi, România, 700506
E-mail: mdobrea@etti.tuiasi.ro

KEYWORDS
Genetic algorithms, controller, robot, avoidance algorithm,
autonomous behavior

ABSTRACT

One of the major problems when building robots capable to
operate in real-world environments is the ability of the
robots to deal with a continuous stream of unexpected real-
time events. In this paper, we present a real reactive robot
able to avoid obstacles. The obstacle avoidance behavior is
tested in real environments and it is mainly based on the
movement knowledge database extracted previously in a
simulation-based learning process. Exactly, a new obstacle-
avoiding genetic algorithm implemented in a configurable
simulation environment for differential wheeled robots is
used to obtain the database of movements for the real robot.
The extracted knowledge database comprises the main set of
rules that directly maps the sensor information into the
engine commands. In real environments, however, for those
singular cases in which none of the simulation-based
extracted rules applies (i.e. this is the case of the situations
never seen before), new rules solving properly the imminent
collisions are obtained online and with the same GA
algorithm.

INTRODUCTION

In the last 20 years, due to the advances of the chipset
industry that mainly boosted the processors market (e.g.
higher working frequencies, new architectures, multiples
cores etc.) the soft computing techniques received a
powerful support. The soft computing techniques that deal
mainly with imprecise and uncertain data are very well fitted
with real environments (which have the same
characteristics).

Fuzzy-logic (FL), neural networks (NNs) and genetic
algorithms (GA) are all soft computing techniques largely
used in real-environment applications such as real-time robot
control applications. Genetic algorithms, for example, are
extensively used to develop controllers for robots –
especially the hybrid ones, like GA-fuzzy or GA-neural
controllers. In these hybrid approaches, the GA adjusts the
parameters of the robot controller. The different values of
these parameters, obtained during an evolutionary process,

generate different behaviors of the robot. In the genetic
evolution, the robots with the best performances have more
chances to spread their characteristics to the offsprings. At
the end, after several iterations, a robot with good
performances is obtained. There is a large number of
successful reported applications in which the GA tunes the
fuzzy logic controllers (Tan et al, 2011), (Martíneza et al,
2009). In the designs of the fuzzy controllers devised for
obstacle avoidance, other type of algorithms like the ant
colony enhances the used GA techniques (Chiou et al,
2010).

In robotics, one of the main applications of the GA
algorithms consists in finding the optimal path that should be
followed by a robotic system in order to reach a particular
goal (Hosseinzadeh and Izadkhah, 2010), (Repoussis et al.
2009). In order to have a reliable navigation algorithm for an
autonomous robot, the latter must be able to: (a) localize its
current position, (b) execute (independently from a human
operator) a local collision-free motion within its
environment and (c) find out a global optimal path to its
final goal. Out of all these last three objectives our work,
presented in this paper, is dedicated only to develop a robot-
improved ability to execute a local collision-free motion
trajectory within real environments. For this, we take
advantage of a simulation environment for robotic systems
in which a genuine GA is used to extract the core movement
knowledge-database. Finally, the effectiveness of the
obtained controller-evolved strategies is tested on a real
robot. The main concept of the new self-evolving controller
is similar to that of the FL approach (e.g. the existence of a
set of rules). Unlike the FL approach, in our case the rules
are extracted using a GA not using the knowledge of some
human experts.

The main application of our GA controller is in the field of
the remote controlled robots. In such applications, the GA
controller adjusts autonomously the remote command
whenever the user command put the robot in the imminent
danger of colliding.

OBSTACLE AVOIDANCE

The uncertainty of the real environments is the biggest
challenge of each autonomous robot. The autonomous
robotic controllers must deal with a large number of factors

like the robotic system mechanical and electrical
characteristics and the environment complexity (e.g. the
variation of spatial and temporal parameters, the
nonlinearities and uncertainty manifested through chaotic
and random dynamics of the environment objects etc.).
Consequently, each autonomous robot must be able to
explore autonomously its environment, recover from
failures, solve new avoidance problems and, most of all – all
these tasks should be done in real-time.

Our robot learns, adapts and generalizes the knowledge
related to both itself and environment with the help of a
genetic algorithm and thus becomes able to execute a
collision-free motion. The learning and adaptation processes
are similar to those in a human being that reacts and learns
through experience.

The robot

The robot has three degrees of freedom (3DOF), being able
to execute two basic movements: rotation and translation. In
the rear part of the robot there are placed two motor-driven
wheels that provide locomotion through differential drive
mechanism, see Figure 1. The two direct current engines that
drive the wheels are, in turn, controlled by a microcontroller
system. An unpowered wheel, placed in the frontal-central
part of the robot, ensures stability. The robot has an average
top speed of 0.3 m/s.

Figure 1: A Picture of the Robot Hardware Implementation

The robotic system has four infrared, IR, proximity sensors –
GP2D120XJ00F. The IR sensors have an active distance
measuring range from 4 up to 30 cm. Three of the IR sensors
are placed in front of the robot, supervising the left, the
central and the right part of the frontal environment, and one
is placed in the central-rear position of the robot, see Figure
1. The sensors return a voltage value proportional to the
distance to the detected obstacles. One of the main IR sensor
problems is that the distance characteristic function is a non-
linear one. As a result, the sensor characteristic was
linearized based on a regression algorithm (Dobrea and
Dobrea, 2010a).

The robot sustains the GA auto-organizing controller that is
built on a powerful 32-bit MCF5213 microcontroller. The
microcontroller belongs to ColdFireTM family and it is based
on a RISC architecture comprising a large number of

peripheral equipments like eight PWM channels, four 32-bit
timers with DMA request capability, eight channels ADC, 3
UARTs, 1 CAN etc.

The robot is designed to learn, in an adaptive manner, based
on the information supplied by the sensors. The speed of the
wheels is updated at 3.3 Hz, through two PWM channels
that command two H-bridges. The program is developed in
C language, using the CodeWarrier IDE. More, we use the
microcontroller interrupt sub-system in order to reduce the
computational burden.

Genetic algorithm

Genetic algorithms (GA) are global search and optimization
techniques inspired from the natural selection mechanism
existing in the nature.

A GA is based on a population of candidate solutions, called
chromosomes. Each chromosome is evaluated and ranked by
a fitness evaluation function. The fitness function provides
information of how good each chromosome is. The
evolution of the GA from a generation to the next one
involves three steps: fitness evaluation, chromosome
selection and building the next generation (mainly based on
GA operators like reproduction and mutation). The next
generation is created with the only goal of improving the
population fitness.

The avoidance algorithm

The avoidance algorithm has a GA as a main engine. In one
chromosome we code left and right engine commands, using
for this two signed chars variables; thus, cj = {left_engj,
right_engj} for the jth chromosome. As a result, each
chromosome is represented on 16 bits. Both chromosome
sections, of 8 bits each, representing the left and the right
engine commands, can take values only within the interval
[–128, 127]. The values for the engine commands have the
following significance: a value of +127 denotes full forward
power engine, –128 represents full back power engine and 0
corresponds to a stop command for the engine.

The values, si, of the IR sensors are first acquired, linearized
(Dobrea and Dobrea, 2010a) and, finally, normalized in [0,
0.9] range, with 0 denoting no obstacle and 0.9 denoting an
imminent collision; more, due to the noise, each sensor value
smaller than 0.02 is forced to take a 0 value. The analytic
form of the fitness function, f(·), is presented in equation (1).
The relation (1) complies with the fundamental paradigm
that defines the fitness in the genetic algorithm field: the
fitness takes the lowest value (zero in our situation) only
when a chromosome successfully solves the problem. In
other case, the fitness measures the ability of each
chromosome to solve more or less the problem – being in a
direct proportional relationship with the vicinity of an
obstacle, as it is in our case.

    



4

14

1

i
ijj nsncf (1)

The motors
controller

system

The front
distance
measuring
sensors

MCF 5213 microcontroller
development board

Interface board between microcontroller
board and the whole system

After 300 ms of robot movement, based on the cj
chromosome containing the engine commands, the fitness is
calculated. A collision-free motion, specified by a
chromosome cj, is characterized by values of 0 for all four
sensors (this corresponds to the “no obstacle” case, in the
vicinity of the robot); in such a situation the fitness function,
f(cj[n]), is also zero.

To obtain – based on a continue interaction of the robot with
its environment, and without any human intervention – a set
of adaptive movements rules, in a first main stage the robot
has to go straightforward. When the robot comes close
enough to an obstacle (i.e. the obstacle lies in the active
range of its sensors), the GA starts to find the best solution
in order to avoid the obstacle; this last case corresponds to
the second main stage of the algorithm. In this last stage,
the most important goal of the real-coded genetic algorithm
is to find the best chromosome(s) that encapsulates those
engine commands that minimize the fitness function. As a
result, the GA finds the best way to avoid the obstacle.

The GA works with population of chromosomes. In other
researches, each chromosome characterizes a single robot
(Messom, 2002). In our case, we have only one robot that
operates the GA, which can be considered a major practical
limitation. To avoid this limitation, in a first step, the robot
will move in one direction based on the engine commands
encapsulated in the first chromosome from the population.
After 300 ms the robot stops and the fitness value associated
with the chromosome is determined. Then, the robot comes
back into the initial position and the algorithm proceeds, in
the same way, for the others chromosomes.

Table 1: Movement Knowledge Database – Real Recordings

After each generation, the fitness value(s) of the best
chromosome(s) from the entire population improves. At the
end, the GA obtains the best obstacle-avoiding solution(s)
for that obstacle-encountered particular situation. Based on
the best-obtained chromosome, the robot moves accordingly
and it correctly navigates without any kind of collision.
After it avoids successfully the obstacle, the robot switches
back to the first main stage of the algorithm, moving only
in a forward direction. However, this will happen only up to
the moment when a new obstacle will come into the sight of
the sensors range. In this last case, the robot will switch to
the second main stage of the algorithm, in which the GA
will have to solve the new avoidance problem. Several of

these complete stages will compose the so-called learning
phase of the robot (we will discuss this, in detail, later).

Each time when the GA solves an avoiding task, the
obtained solution is saved into a table – the so-named
movement knowledge database. Each row of this table
contains the sensors information preceding the GA execution
(four values – a value for each sensor) and the information
stored into the best chromosome (two values – a value for
each engine command), see Table 1.

In the avoiding phase, when an obstacle comes across, a
Euclidean distance is computed between the actual sensor
values of the robot and the sensor values stored in the robot
movement knowledge database. If one of the computed
distances is lower than a predefined threshold the associated
engine commands are executed. Otherwise, the robot enters
into the learning phase and a new movement rule is
extracted and locally stored in the movement knowledge
database. In this way, the self-evolving controller becomes
endowed with the capacity to adjust itself to any new
previously unseen situation encountered in real
environments. More, from the cases presented above one can
deduce that the avoiding phase can take place with or
without the learning process, this fact being elected by the
meeting of the predefined threshold criteria. The learning
phase is composed of several GA instances. The number of
the GA instances is equal with the number of the rules from
the movement knowledge database.

RESULTS AND DISCUSSIONS

The first implementation of the self-evolving controller

In a first attempt, all the steps previously presented were
implemented and the self-evolving controller of the real
robot (see Figure 1) was tested. The method we chose for the
chromosome selection was the stochastic universal sampling,
which exhibits both no bias and a minimal spread (Baker,
1987). The crossover method was two points. Table 2 shows
the list of the main parameters of the GA algorithm as they
were implemented on the robot.

Table 2: The Main Parameters of the Genetic Algorithm

Parameter Value
Population Size 10
Generations 20
Generation gap 0.9
Probability of Mutation 0.0437
Crossover Points 2
Crossover Probability 0.7

As a result, we obtained finally a functional prototype. One
big disadvantage of the self-evolving GA implemented
controller was the significant computation time spent by the
robot in the learning phase. In its turn, this large learning
time generated other additional problems like the wear and
tear of the mechanical parts of the robot as well as the
necessity of a large number of rechargeable cycles for the
batteries. To reduce this time we made use of some practical
observations. For illustration, not every time the GA needed

Sensors Engines
Left Center Right Back Left Right

…

…

…

…

…

…

0.54 0.19 0 0 105 -100
0 0 0.57 0 -109 117

0.49 0.37 0 0 103 -109
0 0 0.61 0 47 85

0.34 0 0 0 93 10
0 0 0.41 0 -104 56

0.43 0.62 0.31 0 -128 -72
0 0 0.40 0.32 75 91

…

…

…

…

…

…

20 generations to converge. In many situations after fewer
generations (in several cases even in the first generation) the

fitness function took a zero value. Based on this observation
we imposed the GA to stop whenever the fitness on a single
chromosome took a zero value. In this mode, the learning
time was considerable diminished.

However, even after all the software enhancements the time
elapsed in the learning phase remained high for our real
implemented robotic system. Moreover, a robotic system
tested in real environments usually raises some difficulties
mainly related to the possibility to make debug on the
software modules. These difficulties cumulated with the long
time required for each practical testing made our first
solution to be quite impractical. Therefore, an alternative
approach had to be considered.

In order to overcome all the above-presented disadvantages
and thus, to further be able to confirm the main concepts of
the new-introduced self-evolving GA controller, we chose
the following complementary approach that speeds up the
development process of the robotic system: (1) the (main
part of the) learning phase is done in a simulation
environment that finally provides the extracted movement
knowledge database, and (2) the avoiding phase (we mean
by this the testing of the controller) is done in a real
environment, using for this the previous extracted movement
knowledge database.

The simulator

One problem with the new approach used to extract the
movement knowledge database resides in the possibility of
the self-evolving controller to learn an avoiding behavior
that is adjusted to the particular features of the simulated
robotic system – features that does not necessary has an
identical correspondent in the real world.

To avoid this problem we had to model both the robot (its
mechanical, electrical and electronically characteristics) and

the environment, as realistic as possible. To achieve this goal
we chose the MobotSim simulator, version 1.0.03. The
MobotSim is a configurable 2D simulator of differential
drive mobile robots. The core language for MobotSim is the
Sax Basic language – a Visual Basic for ApplicationsTM
compatible language. In the MobotSim environment we
configured for the robot the following parameters: the
platform diameter, the distance between wheels, the wheels
diameter, the number of the sensors, the angle between the
sensors, the sensor ring radius, the radiation cone, the
sensors range and the percentage of misreading. All of these
parameters were set accordingly with the real robot
mechanical and electronic features.

The second implementation of the self-evolving
controller

In the second implementation of the robot we split, as
previously presented, the learning phase and the avoiding
phase. For the learning phase, we used a simulator
environment while the avoiding phase was tested in real
environments.

Figure 3: The Evolution of the Fitness for the Best
Chromosome in Each Generation – Case D in Figure 2

Fitness of the best individual

Generations

E

Figure 2: The Learning Phase of the Robot

A

B

C

D

C C

Figure 2 presents the results obtained in the learning phase,
on more than 200 GA instances. The time needed to obtain
this figure on an Intel(R) Core(TM) i7 CPU at 2.8 GHz, with
8 GB of RAM was 12 hours and 24 minute. Figure 3
presents the evolutions of the GA (i.e. the evolution of the
fitness of the best chromosome on each generation) that
correspond to the case D displayed in Figure 2. Out of this
figure, one can notice the ability of the GA algorithm to
improve the avoidance performances and to solve each of the
particular indicated obstacle-avoidance tasks.
One of the main parameters of the GA (with an important
impact on both the convergence time to a solution and the
quality of that solution) is the population size. This is even
more critical in our case because when a new, previously
unseen situation is encountered by the robot a local GA have
to solve the new avoiding task; in this last case and,
especially when speaking about real applications – a fast
convergence time and a good avoiding solution provided by
the GA algorithm proves to be of great value in critical
situations. After a large number of tests, a population of 10
chromosomes seemed to comply with the both previously
presented constrains.

In Figure 2 one can observe that the GA self-evolving
controller is able to solve all the collision situations, like the
ones when the robot is placed in corners or even in the hard
situations similar with the ones marked with A and B. The
ability of the real robot to solve real situations is given by the
diversity of the situations encapsulated in the movement
knowledge database. From this reason, the learning phase
has to be stopped not when a time value is elapsed or when a
number of GA instances is reached. The learning phase will
be considered completed only when the simulated robot had
been already solved a large number of different types of
obstacle avoidance cases. Otherwise, the movement
knowledge database will comprise only solutions for the
most common encountered avoiding situations – as the one
marked with C in Figure 2.

The learning environment for the robot consisted in a
delimited zone (of around 2 m x 2 m) having one obstacle
randomly placed within. This learning zone was build from a
number of boxes, of different dimensions, placed as to obtain
a close perimeter. From the entire movement knowledge
database obtained in the learning process presented in Figure
2, in the real robot only the first 50 instances of the GA were
used. The first 50 rules includes A and B avoidance cases,
presented in Figure 2.

Based on these rules the robot was able to navigate correctly
in the real environment, without any kind of collision. A very
interesting characteristic consists in the fact that the robot
(with only 50 movement knowledge rules) never triggered the
GA in the real environment. More, comparing to other
existing approaches, one of the most important features of
this robotic self-evolving controller remains its ability to
navigate in real environment without any kind of collision
which still exists in the learning phase of other reported
solutions based on ANNs (Dobrea and Dobrea, 2010a),
(Dobrea and Dobrea, 2010b), (Tan et al. 2008).

CONCLUSIONS

This paper reports the development of a new intelligent self-
evolving controller for a robotic system able to auto-evolve
to a behavior that allows to sense, reason and act – all these
in order to avoid all obstacles from a real world
environment.

As we mentioned previously, a single evaluation of the
entire population, even for a small population of 10
chromosomes, requires significant computation time. From
this reason, the main set of movement knowledge database
was extracted inside a simulation environment. This set of
rules supports, on the first stage, the robot dynamics. In the
second stage, if an unseen situation occurs, a genetic
algorithm, similar with the one implemented in the
simulation environment, will solve the problem and the new
extracted rule will be used in order to avoid in the future
similar situations.

In classical approaches, transferring controllers evolved in
simulation environments to physical robots is a very difficult
task (Messom, 2002). In our approach, to transfer the
movement knowledge database obtained inside a
simulation environment to the real robot was a success and it
represents a new way to solve this problem. The approach
presented in this paper has another big advantage: it is very
easy to implement it in real robotic systems as it has already
been proven.

ACKNOWLEDGMENT

This work was supported by the CNCSIS – UEFISCSU
project number PN II – IDEI 1552/2008.

REFERENCES

Tan, S.; Yang, S.X.; and A.M. Zhu. 2011. “A Novel GA-Based

Fuzzy Controller for Mobile Robots on Dynamic Environments
with Moving Obstacles.”, International Journal of Robotics &
Automation, Vol. 26, Issue 2, 212-228

Chiou, J.S.; Wang, C.J.; Wang K.Y.; Hu, Y.C.; Cheng, S.W.; and
C.H. Chen. 2010. “Hybrid Algorithm of FLC Design for Robot
Soccer.”, International Journal of Nonlinear Sciences and
Numerical Simulation, Vol. 11, 119-122

Martíneza, R.; Castilloa, O.; and L.T. Aguilarb. 2009.
“Optimization of interval type-2 fuzzy logic controllers for a
perturbed autonomous wheeled mobile robot using genetic
algorithms.”, Information Sciences, Vol. 179, Issue 13, 2158-
2174

Hosseinzadeh, A. and H. Izadkhah. 2010. “Evolutionary Approach
for Mobile Robot Path Planning in Complex Environment.”,
International Journal of Computer Science Issues, Vol. 7, Issue
4, No 8, 1-9.

Repoussis, P.P.; Tarantilis, C.D.; and G. Ioannou. 2009. “Arc-
Guided Evolutionary Algorithm for the Vehicle Routing
Problem With Time Windows.”, IEEE Transactions on
Evolutionary Computation, Vol. 13, Issue 3 (June), 624 - 647

Dobrea D.M. and M.C. Dobrea. 2010a. “An auto-organization bio-
inspired robotic system.”, In Proceedings of the International
Conference on Future Information Technology (Changsha, Ch,
Dec. 14-15). IEEE, Picataway, N.J., 354-358.

Baker J.E., 1987. “Reducing bias and inefficiency in the selection
algorithm.”, In Proceedings of the Second International
Conference on Genetic Algorithms (Cambridge, USA). L.
Erlbaum Associates Inc. Hillsdale, NJ, pp. 14-21, July 1987

Tan A.H.; Lu N.; and D. Xiao. 2008. “Integrating Temporal
Difference Methods and Self-Organizing Neural Networks for
Reinforcement Learning With Delayed Evalutive Feedback.”,
IEEE Transaction on Neural Network, Vol. 19, 230-244

Messom C. 2002. “Genetic Algorithms for Auto-tuning Mobile
Robot Motion Control.”, Research Letters in the Information

and Mathematical Sciences, Vol. 3, 129-134
Dobrea D.M. and M.C. Dobrea. 2010b. “An Autonomous Robotic

System”, In Proceedings of the 9th International Symposium on
Electronics and Telecommunications (Timișoara, Ro, Nov. 11-
12) . IEEE, Picataway, N.J., 107-110

