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ABSTRACT 
 
One of the major problems when building robots capable to 
operate in real-world environments is the ability of the 
robots to deal with a continuous stream of unexpected real-
time events. In this paper, we present a real reactive robot 
able to avoid obstacles. The obstacle avoidance behavior is 
tested in real environments and it is mainly based on the 
movement knowledge database extracted previously in a 
simulation-based learning process. Exactly, a new obstacle-
avoiding genetic algorithm implemented in a configurable 
simulation environment for differential wheeled robots is 
used to obtain the database of movements for the real robot. 
The extracted knowledge database comprises the main set of 
rules that directly maps the sensor information into the 
engine commands. In real environments, however, for those 
singular cases in which none of the simulation-based 
extracted rules applies (i.e. this is the case of the situations 
never seen before), new rules solving properly the imminent 
collisions are obtained online and with the same GA 
algorithm.  
 
INTRODUCTION 
 
In the last 20 years, due to the advances of the chipset 
industry that mainly boosted the processors market (e.g. 
higher working frequencies, new architectures, multiples 
cores etc.) the soft computing techniques received a 
powerful support. The soft computing techniques that deal 
mainly with imprecise and uncertain data are very well fitted 
with real environments (which have the same 
characteristics).  
 
Fuzzy-logic (FL), neural networks (NNs) and genetic 
algorithms (GA) are all soft computing techniques largely 
used in real-environment applications such as real-time robot 
control applications. Genetic algorithms, for example, are 
extensively used to develop controllers for robots – 
especially the hybrid ones, like GA-fuzzy or GA-neural 
controllers. In these hybrid approaches, the GA adjusts the 
parameters of the robot controller. The different values of 
these parameters, obtained during an evolutionary process, 

generate different behaviors of the robot. In the genetic 
evolution, the robots with the best performances have more 
chances to spread their characteristics to the offsprings. At 
the end, after several iterations, a robot with good 
performances is obtained. There is a large number of 
successful reported applications in which the GA tunes the 
fuzzy logic controllers (Tan et al, 2011), (Martíneza et al, 
2009). In the designs of the fuzzy controllers devised for 
obstacle avoidance, other type of algorithms like the ant 
colony enhances the used GA techniques (Chiou et al, 
2010).  
  
In robotics, one of the main applications of the GA 
algorithms consists in finding the optimal path that should be 
followed by a robotic system in order to reach a particular 
goal (Hosseinzadeh and Izadkhah, 2010), (Repoussis et al. 
2009). In order to have a reliable navigation algorithm for an 
autonomous robot, the latter must be able to: (a) localize its 
current position, (b) execute (independently from a human 
operator) a local collision-free motion within its 
environment and (c) find out a global optimal path to its 
final goal. Out of all these last three objectives our work, 
presented in this paper, is dedicated only to develop a robot-
improved ability to execute a local collision-free motion 
trajectory within real environments. For this, we take 
advantage of a simulation environment for robotic systems 
in which a genuine GA is used to extract the core movement 
knowledge-database. Finally, the effectiveness of the 
obtained controller-evolved strategies is tested on a real 
robot. The main concept of the new self-evolving controller 
is similar to that of the FL approach (e.g. the existence of a 
set of rules). Unlike the FL approach, in our case the rules 
are extracted using a GA not using the knowledge of some 
human experts. 
 
The main application of our GA controller is in the field of 
the remote controlled robots. In such applications, the GA 
controller adjusts autonomously the remote command 
whenever the user command put the robot in the imminent 
danger of colliding. 
 
OBSTACLE AVOIDANCE 
 
The uncertainty of the real environments is the biggest 
challenge of each autonomous robot. The autonomous 
robotic controllers must deal with a large number of factors 



like the robotic system mechanical and electrical 
characteristics and the environment complexity (e.g. the 
variation of spatial and temporal parameters, the 
nonlinearities and uncertainty manifested through chaotic 
and random dynamics of the environment objects etc.). 
Consequently, each autonomous robot must be able to 
explore autonomously its environment, recover from 
failures, solve new avoidance problems and, most of all – all 
these tasks should be done in real-time. 
 
Our robot learns, adapts and generalizes the knowledge 
related to both itself and environment with the help of a 
genetic algorithm and thus becomes able to execute a 
collision-free motion. The learning and adaptation processes 
are similar to those in a human being that reacts and learns 
through experience. 
 
The robot 
 
The robot has three degrees of freedom (3DOF), being able 
to execute two basic movements: rotation and translation. In 
the rear part of the robot there are placed two motor-driven 
wheels that provide locomotion through differential drive 
mechanism, see Figure 1. The two direct current engines that 
drive the wheels are, in turn, controlled by a microcontroller 
system. An unpowered wheel, placed in the frontal-central 
part of the robot, ensures stability. The robot has an average 
top speed of 0.3 m/s.  
 

 

 

 

 

 

 

 

 

 

Figure 1: A Picture of the Robot Hardware Implementation 
 
The robotic system has four infrared, IR, proximity sensors – 
GP2D120XJ00F. The IR sensors have an active distance 
measuring range from 4 up to 30 cm. Three of the IR sensors 
are placed in front of the robot, supervising the left, the 
central and the right part of the frontal environment, and one 
is placed in the central-rear position of the robot, see Figure 
1. The sensors return a voltage value proportional to the 
distance to the detected obstacles. One of the main IR sensor 
problems is that the distance characteristic function is a non-
linear one. As a result, the sensor characteristic was 
linearized based on a regression algorithm (Dobrea and 
Dobrea, 2010a). 
 
The robot sustains the GA auto-organizing controller that is 
built on a powerful 32-bit MCF5213 microcontroller. The 
microcontroller belongs to ColdFireTM family and it is based 
on a RISC architecture comprising a large number of 

peripheral equipments like eight PWM channels, four 32-bit 
timers with DMA request capability, eight channels ADC, 3 
UARTs, 1 CAN etc. 
 
The robot is designed to learn, in an adaptive manner, based 
on the information supplied by the sensors. The speed of the 
wheels is updated at 3.3 Hz, through two PWM channels 
that command two H-bridges. The program is developed in 
C language, using the CodeWarrier IDE. More, we use the 
microcontroller interrupt sub-system in order to reduce the 
computational burden. 
 
Genetic algorithm 
 
Genetic algorithms (GA) are global search and optimization 
techniques inspired from the natural selection mechanism 
existing in the nature.  
 
A GA is based on a population of candidate solutions, called 
chromosomes. Each chromosome is evaluated and ranked by 
a fitness evaluation function. The fitness function provides 
information of how good each chromosome is. The 
evolution of the GA from a generation to the next one 
involves three steps: fitness evaluation, chromosome 
selection and building the next generation (mainly based on 
GA operators like reproduction and mutation). The next 
generation is created with the only goal of improving the 
population fitness.  
 
The avoidance algorithm 
 
The avoidance algorithm has a GA as a main engine. In one 
chromosome we code left and right engine commands, using 
for this two signed chars variables; thus, cj = {left_engj, 
right_engj} for the jth chromosome. As a result, each 
chromosome is represented on 16 bits. Both chromosome 
sections, of 8 bits each, representing the left and the right 
engine commands, can take values only within the interval 
[–128, 127]. The values for the engine commands have the 
following significance: a value of +127 denotes full forward 
power engine, –128 represents full back power engine and 0 
corresponds to a stop command for the engine. 
 
The values, si, of the IR sensors are first acquired, linearized 
(Dobrea and Dobrea, 2010a) and, finally, normalized in [0, 
0.9] range, with 0 denoting no obstacle and 0.9 denoting an 
imminent collision; more, due to the noise, each sensor value 
smaller than 0.02 is forced to take a 0 value.  The analytic 
form of the fitness function, f(·), is presented in equation (1). 
The relation (1) complies with the fundamental paradigm 
that defines the fitness in the genetic algorithm field: the 
fitness takes the lowest value (zero in our situation) only 
when a chromosome successfully solves the problem. In 
other case, the fitness measures the ability of each 
chromosome to solve more or less the problem – being in a 
direct proportional relationship with the vicinity of an 
obstacle, as it is in our case. 
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After 300 ms of robot movement, based on the cj 
chromosome containing the engine commands, the fitness is 
calculated. A collision-free motion, specified by a 
chromosome cj, is characterized by values of 0 for all four 
sensors (this corresponds to the “no obstacle” case, in the 
vicinity of the robot); in such a situation the fitness function, 
f(cj[n]), is also zero. 
 
To obtain – based on a continue interaction of the robot with 
its environment, and without any human intervention – a set 
of adaptive movements rules, in a first main stage the robot 
has to go straightforward. When the robot comes close 
enough to an obstacle (i.e. the obstacle lies in the active 
range of its sensors), the GA starts to find the best solution 
in order to avoid the obstacle; this last case corresponds to 
the second main stage of the algorithm. In this last stage, 
the most important goal of the real-coded genetic algorithm 
is to find the best chromosome(s) that encapsulates those 
engine commands that minimize the fitness function. As a 
result, the GA finds the best way to avoid the obstacle. 
  
The GA works with population of chromosomes. In other 
researches, each chromosome characterizes a single robot 
(Messom, 2002). In our case, we have only one robot that 
operates the GA, which can be considered a major practical 
limitation. To avoid this limitation, in a first step, the robot 
will move in one direction based on the engine commands 
encapsulated in the first chromosome from the population. 
After 300 ms the robot stops and the fitness value associated 
with the chromosome is determined. Then, the robot comes 
back into the initial position and the algorithm proceeds, in 
the same way, for the others chromosomes.   
 
Table 1: Movement Knowledge Database – Real Recordings 

 
After each generation, the fitness value(s) of the best 
chromosome(s) from the entire population improves. At the 
end, the GA obtains the best obstacle-avoiding solution(s) 
for that obstacle-encountered particular situation. Based on 
the best-obtained chromosome, the robot moves accordingly 
and it correctly navigates without any kind of collision. 
After it avoids successfully the obstacle, the robot switches 
back to the first main stage of the algorithm, moving only 
in a forward direction. However, this will happen only up to 
the moment when a new obstacle will come into the sight of 
the sensors range. In this last case, the robot will switch to 
the second main stage of the algorithm, in which the GA 
will have to solve the new avoidance problem. Several of 

these complete stages will compose the so-called learning 
phase of the robot (we will discuss this, in detail, later).  
 
Each time when the GA solves an avoiding task, the 
obtained solution is saved into a table – the so-named 
movement knowledge database. Each row of this table 
contains the sensors information preceding the GA execution 
(four values – a value for each sensor) and the information 
stored into the best chromosome (two values – a value for 
each engine command), see Table 1. 
 
In the avoiding phase, when an obstacle comes across, a 
Euclidean distance is computed between the actual sensor 
values of the robot and the sensor values stored in the robot 
movement knowledge database. If one of the computed 
distances is lower than a predefined threshold the associated 
engine commands are executed. Otherwise, the robot enters 
into the learning phase and a new movement rule is 
extracted and locally stored in the movement knowledge 
database. In this way, the self-evolving controller becomes 
endowed with the capacity to adjust itself to any new 
previously unseen situation encountered in real 
environments. More, from the cases presented above one can 
deduce that the avoiding phase can take place with or 
without the learning process, this fact being elected by the 
meeting of the predefined threshold criteria. The learning 
phase is composed of several GA instances. The number of 
the GA instances is equal with the number of the rules from 
the movement knowledge database. 
 
RESULTS AND DISCUSSIONS 
 
The first implementation of the self-evolving controller 
 
In a first attempt, all the steps previously presented were 
implemented and the self-evolving controller of the real 
robot (see Figure 1) was tested. The method we chose for the 
chromosome selection was the stochastic universal sampling, 
which exhibits both no bias and a minimal spread (Baker, 
1987). The crossover method was two points. Table 2 shows 
the list of the main parameters of the GA algorithm as they 
were implemented on the robot.  
 

Table 2: The Main Parameters of the Genetic Algorithm 

Parameter Value 
Population Size 10 
Generations 20
Generation gap 0.9 
Probability of Mutation 0.0437 
Crossover Points 2 
Crossover Probability 0.7 

 
As a result, we obtained finally a functional prototype. One 
big disadvantage of the self-evolving GA implemented 
controller was the significant computation time spent by the 
robot in the learning phase. In its turn, this large learning 
time generated other additional problems like the wear and 
tear of the mechanical parts of the robot as well as the 
necessity of a large number of rechargeable cycles for the 
batteries. To reduce this time we made use of some practical 
observations. For illustration, not every time the GA needed 
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20 generations to converge. In many situations after fewer 
generations (in several cases even in the first generation) the 

fitness function took a zero value. Based on this observation 
we imposed the GA to stop whenever the fitness on a single 
chromosome took a zero value. In this mode, the learning 
time was considerable diminished.  
 
However, even after all the software enhancements the time 
elapsed in the learning phase remained high for our real 
implemented robotic system. Moreover, a robotic system 
tested in real environments usually raises some difficulties 
mainly related to the possibility to make debug on the 
software modules. These difficulties cumulated with the long 
time required for each practical testing made our first 
solution to be quite impractical. Therefore, an alternative 
approach had to be considered.  
 
In order to overcome all the above-presented disadvantages 
and thus, to further be able to confirm the main concepts of 
the new-introduced self-evolving GA controller, we chose 
the following complementary approach that speeds up the 
development process of the robotic system: (1) the (main 
part of the) learning phase is done in a simulation 
environment that finally provides the extracted movement 
knowledge database, and (2) the avoiding phase (we mean 
by this the testing of the controller) is done in a real 
environment, using for this the previous extracted movement 
knowledge database. 
 
The simulator 
 
One problem with the new approach used to extract the 
movement knowledge database resides in the possibility of 
the self-evolving controller to learn an avoiding behavior 
that is adjusted to the particular features of the simulated 
robotic system – features that does not necessary has an 
identical correspondent in the real world.  
 

To avoid this problem we had to model both the robot (its 
mechanical, electrical and electronically characteristics) and 

the environment, as realistic as possible. To achieve this goal 
we chose the MobotSim simulator, version 1.0.03. The 
MobotSim is a configurable 2D simulator of differential 
drive mobile robots. The core language for MobotSim is the 
Sax Basic language – a Visual Basic for ApplicationsTM 
compatible language. In the MobotSim environment we 
configured for the robot the following parameters: the 
platform diameter, the distance between wheels, the wheels 
diameter, the number of the sensors, the angle between the 
sensors, the sensor ring radius, the radiation cone, the 
sensors range and the percentage of misreading. All of these 
parameters were set accordingly with the real robot 
mechanical and electronic features. 
 
The second implementation of the self-evolving 
controller 
 
In the second implementation of the robot we split, as 
previously presented, the learning phase and the avoiding 
phase. For the learning phase, we used a simulator 
environment while the avoiding phase was tested in real 
environments. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The Evolution of the Fitness for the Best 
Chromosome in Each Generation – Case D in Figure 2 
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Figure 2: The Learning Phase of the Robot  
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Figure 2 presents the results obtained in the learning phase, 
on more than 200 GA instances. The time needed to obtain 
this figure on an Intel(R) Core(TM) i7 CPU at 2.8 GHz, with 
8 GB of RAM was 12 hours and 24 minute. Figure 3 
presents the evolutions of the GA (i.e. the evolution of the 
fitness of the best chromosome on each generation) that 
correspond to the case D displayed in Figure 2. Out of this 
figure, one can notice the ability of the GA algorithm to 
improve the avoidance performances and to solve each of the 
particular indicated obstacle-avoidance tasks. 
One of the main parameters of the GA (with an important 
impact on both the convergence time to a solution and the 
quality of that solution) is the population size. This is even 
more critical in our case because when a new, previously 
unseen situation is encountered by the robot a local GA have 
to solve the new avoiding task; in this last case and, 
especially when speaking about real applications – a fast 
convergence time and a good avoiding solution provided by 
the GA algorithm proves to be of great value in critical 
situations. After a large number of tests, a population of 10 
chromosomes seemed to comply with the both previously 
presented constrains. 
 
In Figure 2 one can observe that the GA self-evolving 
controller is able to solve all the collision situations, like the 
ones when the robot  is placed in corners or even in the hard 
situations similar with the ones marked with A and B. The 
ability of the real robot to solve real situations is given by the 
diversity of the situations encapsulated in the movement 
knowledge database. From this reason, the learning phase 
has to be stopped not when a time value is elapsed or when a 
number of GA instances is reached. The learning phase will 
be considered completed only when the simulated robot had 
been already solved a large number of different types of 
obstacle avoidance cases. Otherwise, the movement 
knowledge database will comprise only solutions for the 
most common encountered avoiding situations – as the one 
marked with C in Figure 2. 
 
The learning environment for the robot consisted in a 
delimited zone (of around 2 m x 2 m) having one obstacle 
randomly placed within. This learning zone was build from a 
number of boxes, of different dimensions, placed as to obtain 
a close perimeter. From the entire movement knowledge 
database obtained in the learning process presented in Figure 
2, in the real robot only the first 50 instances of the GA were 
used. The first 50 rules includes A and B avoidance cases, 
presented in Figure 2.  
 
Based on these rules the robot was able to navigate correctly 
in the real environment, without any kind of collision. A very 
interesting characteristic consists in the fact that the robot 
(with only 50 movement knowledge rules) never triggered the 
GA in the real environment. More, comparing to other 
existing approaches, one of the most important features of 
this robotic self-evolving controller remains its ability to 
navigate in real environment without any kind of collision  
which still exists in the learning phase of other reported 
solutions based on ANNs (Dobrea and Dobrea, 2010a), 
(Dobrea and Dobrea, 2010b), (Tan et al. 2008). 
 
CONCLUSIONS 

 
This paper reports the development of a new intelligent self-
evolving controller for a robotic system able to auto-evolve 
to a behavior that allows to sense, reason and act – all these 
in order to avoid all obstacles from a real world 
environment.  
 
As we mentioned previously, a single evaluation of the 
entire population, even for a small population of 10 
chromosomes, requires significant computation time. From 
this reason, the main set of movement knowledge database 
was extracted inside a simulation environment. This set of 
rules supports, on the first stage, the robot dynamics. In the 
second stage, if an unseen situation occurs, a genetic 
algorithm, similar with the one implemented in the 
simulation environment, will solve the problem and the new 
extracted rule will be used in order to avoid in the future 
similar situations.  
 
In classical approaches, transferring controllers evolved in 
simulation environments to physical robots is a very difficult 
task (Messom, 2002). In our approach, to transfer the 
movement knowledge database obtained inside a 
simulation environment to the real robot was a success and it 
represents a new way to solve this problem. The approach 
presented in this paper has another big advantage: it is very 
easy to implement it in real robotic systems as it has already 
been proven. 
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